Efficient Higher-Order Analysis of Electromagnetic Scattering of Objects in Half-Space by Domain Decomposition Method with a Hybrid Solver
نویسندگان
چکیده
Integral equation domain decomposition method (IE-DDM) with an efficient higher-order method for the analysis of electromagnetic scattering from arbitrary three-dimensional conducting objects in a half-space is conducted in this paper. The original objects are decomposed into several closed subdomains. Due to the flexibility of DDM, it allows different basis functions and fast solvers to be used in different subdomains based on the property of each subdomain. Here, the higher-order vector basis functions defined on curvilinear triangular patches are used in each subdomain with the flexibility of order selection, which significantly reduces the number of unknowns. Then a novel hybrid solver is introduced where the adaptive cross approximation (ACA) and the half-space multilevel fast multipole algorithm (HS-MLFMA) are integrated seamlessly in the framework of IE-DDM. The hybrid solver enhances the capability of IE-DDM and realizes efficient solution for objects above, below, or even straddling the interface of a half-space. Numerical results are presented to validate the efficiency and accuracy of this method.
منابع مشابه
High-frequency Method Analysis on Scattering from Homogenous Dielectric Objects with Electrically Large Size in Half Space
The high-frequency method for solving the scattering from homogeneous dielectric objects with electrically large size in half space is presented in this paper. In order to consider the scattering fields of the targets in half space, the half-space physical optics method is deduced by introducing the half-space Green’s function into the conventional physical optics method (PO). Combined with the...
متن کاملHybrid method for full identification of buried objects and surrounding media
This study describes a hybrid technique for identification of buried objects. The objects shape and electromagnetic profile are reconstructed from evaluations of electrical permittivity and conductivity. The method suggests a combination of linear sampling and optimization. Linear sampling method (LSM) is used to recover shape and metaheuristic optimizations essential to reconstruct the inside...
متن کاملUpdating finite element model using frequency domain decomposition method and bees algorithm
The following study deals with the updating the finite element model of structures using the operational modal analysis. The updating process uses an evolutionary optimization algorithm, namely bees algorithm which applies instinctive behavior of honeybees for finding food sources. To determine the uncertain updated parameters such as geometry and material properties of the structure, local and...
متن کاملSea Surfaces Scattering by Multi-Order Small-Slope Approximation: a Monte-Carlo and Analytical Comparison
L-band electromagnetic scattering from two-dimensional random rough sea surfaces are calculated by first- and second-order Small-Slope Approximation (SSA1, 2) methods. Both analytical and numerical computations are utilized to calculate incoherent normalized radar cross-section (NRCS) in mono- and bi-static cases. For evaluating inverse Fourier transform, inverse fast Fourier transform (IFFT) i...
متن کاملOutput-only Modal Analysis of a Beam Via Frequency Domain Decomposition Method Using Noisy Data
The output data from a structure is the building block for output-only modal analysis. The structure response in the output data, however, is usually contaminated with noise. Naturally, the success of output-only methods in determining the modal parameters of a structure depends on noise level. In this paper, the possibility and accuracy of identifying the modal parameters of a simply supported...
متن کامل